

SILAC-RPMI (3plex) Kit

Catalog Number: SM202109 (Version 1.0)

Description

SILAC (Stable Isotope Labeling with Amino acids in Cell culture) is a powerful quantitative proteomic method to identify and quantify the relative changes of protein abundance in complex protein samples. This approach utilizes the *in vivo* metabolic incorporation of "heavy" ¹³C- or/and ¹⁵N-labeled amino acids (Lysine, Arginine, etc.) into proteins during cell culture, introducing the specific "MS tag" on proteins in comparison with the unlabeled counterpart, which enables the mass spectrometry (MS) to comprehensively identify, characterize, and quantify the proteins.

Contents

Product	Cat. No.	Contents	Storage
SILAC-RPMI (3plex) Kit	SM202109	1×500ML (K0R0)	4°C
		1×500ML (K4R6)	4°C
		1×500ML (K8R10)	4°C
		3×50ML D-FBS (DF-50)	-20°C

SILAC-RPMI (3plex) Kit is designed to compare <u>three</u> groups of samples using SILAC approach. K and R amino acids added into each medium are listed as below:

K0R0 K4R6		K8R10		
Lysine (K0)	(4,4,5,5-D4)-Lysine (K4)	¹³ C ₆ , ¹⁵ N ₂ -Lysine (K8)		
Arginine (R0)	¹³ C ₆ -Arginine (R6)	¹³ C ₆ , ¹⁵ N ₄ -Arginine (R10)		

For experimental design, culture of group 1 in <u>K0R0</u> medium (recommend as control group, Light), group 2 in <u>K4R6</u> (Medium), and group 3 in <u>K8R10</u> (Heavy), respectively. In downstream MS analysis, three MS1 pairs will be observed in K- (0, 4, 8 Dalton) or R (0, 6, 10 Dalton)-containing peptides, enabling the relative quantification of protein expression level or enriched level (interaction profiling) among three groups.

Usage & Application

1. Before use, add 10% (v/v) of D-FBS (DF-50) into K0R0, K4R6, and K8R10

media (complete media) respectively.

- Use <u>K4R6 and K8R10</u> complete media to culture cells over six passages, extract proteins, and check the SILAC labeling efficiency by mass spectrometry, respectively.
- 3. Cryopreservation of **K4R6 and K8R10**-labeled cells with the standard protocol for long-term use.
- 4. For primary cells and cell lines sensitive to dialyzed FBS, SILAC method is not recommended.

Troubleshooting

Problem		Cause		Solution	
1.	Cells are not viable	Probably due to	1.	Change cell lines	
	or grow poorly.	dialyzed FBS. Dialyzed		insensitive to dialyzed	
2.	Cell morphological	FBS lacks some small		FBS.	
	changes.	molecules important for	2.	Increase the dialyzed	
		cell growth.		FBS up to 15-20%.	
			3.	Try and test the	
				dialyzed FBS from	
				other vendors.	